
Package: rix (via r-universe)
November 20, 2024

Title Reproducible Data Science Environments with 'Nix'

Version 0.13.4

Description Simplifies the creation of reproducible data science
environments using the 'Nix' package manager, as described in
Dolstra (2006) <ISBN 90-393-4130-3>. The included `rix()`
function generates a complete description of the environment as
a `default.nix` file, which can then be built using 'Nix'. This
results in project specific software environments with pinned
versions of R, packages, linked system dependencies, and other
tools. Additional helpers make it easy to run R code in 'Nix'
software environments for testing and production.

License GPL (>= 3)

URL https://docs.ropensci.org/rix/

BugReports https://github.com/ropensci/rix/issues

Depends R (>= 2.10)

Imports codetools, curl, jsonlite, sys, utils

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Config/pak/sysreqs libssl-dev

Repository https://b-rodrigues.r-universe.dev

RemoteUrl https://github.com/ropensci/rix

RemoteRef HEAD

RemoteSha 9f8474f18eb06fae72a7ab1bf449af748620bee7

1

https://docs.ropensci.org/rix/
https://github.com/ropensci/rix/issues

2 ga_cachix

Contents
available_r . 2
ga_cachix . 2
generate_rpkgs . 3
nix_build . 4
read_renv_lock . 5
renv2nix . 5
renv_lock_r_ver . 8
renv_remote_pkgs . 9
rix . 10
rix_init . 13
tar_nix_ga . 15
with_nix . 16

Index 19

available_r List available R versions from Nixpkgs

Description

List available R versions from Nixpkgs

Usage

available_r()

Value

A character vector containing the available R versions.

Examples

available_r()

ga_cachix ga_cachix Build an environment on Github Actions and cache it on
Cachix

Description

ga_cachix Build an environment on Github Actions and cache it on Cachix

Usage

ga_cachix(cache_name, path_default)

generate_rpkgs 3

Arguments

cache_name String, name of your cache.

path_default String, relative path (from the root directory of your project) to the default.nix
to build.

Details

This function puts a .yaml file inside the .github/workflows/ folders on the root of your project.
This workflow file will use the projects default.nix file to generate the development environment
on Github Actions and will then cache the created binaries in Cachix. Create a free account on
Cachix to use this action. Refer to vignette("z-binary_cache") for detailed instructions. Make
sure to give read and write permissions to the Github Actions bot.

Value

Nothing, copies file to a directory.

Examples

Not run:
ga_cachix("my-cachix", path_default = "default.nix")

End(Not run)

generate_rpkgs generate_rpkgs Internal function that generates the string containing
the correct Nix expression to get R packages.

Description

generate_rpkgs Internal function that generates the string containing the correct Nix expression to
get R packages.

Usage

generate_rpkgs(rPackages, flag_rpkgs)

Arguments

rPackages Character, list of R packages to install.

flag_rpkgs Character, are there any R packages at all?

4 nix_build

nix_build Invoke shell command nix-build from an R session

Description

Invoke shell command nix-build from an R session

Usage

nix_build(
project_path = getwd(),
message_type = c("simple", "quiet", "verbose")

)

Arguments

project_path Path to the folder where the default.nix file resides.

message_type Character vector with messaging type, Either "simple" (default), "quiet" for
no messaging, or "verbose".

Details

The nix-build command line interface has more arguments. We will probably not support all of
them in this R wrapper, but currently we have support for the following nix-build flags:

• --max-jobs: Maximum number of build jobs done in parallel by Nix. According to the offi-
cial docs of Nix, it defaults to 1, which is one core. This option can be useful for shared mem-
ory multiprocessing or systems with high I/O latency. To set --max-jobs used, you can de-
clare with options(rix.nix_build_max_jobs = <integer>). Once you call nix_build()
the flag will be propagated to the call of nix-build.

Value

integer of the process ID (PID) of nix-build shell command launched, if nix_build() call is
assigned to an R object. Otherwise, it will be returned invisibly.

Examples

Not run:
nix_build()

End(Not run)

read_renv_lock 5

read_renv_lock read_renv_lock

Description

Reads renv.lock if it exists and can be parsed as json.

Usage

read_renv_lock(renv_lock_path = "renv.lock")

Arguments

renv_lock_path location of the renv.lock file, defaults to "renv.lock"

Value

the result of reading renv.lock with jsonlite::read_json

renv2nix renv2nix

Description

renv2nix

Usage

renv2nix(
renv_lock_path = "renv.lock",
return_rix_call = FALSE,
method = c("fast", "accurate"),
override_r_ver = NULL,
...

)

Arguments

renv_lock_path Character, path of the renv.lock file, defaults to "renv.lock"
return_rix_call

Logical, return the generated rix function call instead of evaluating it this is for
debugging purposes, defaults to FALSE

6 renv2nix

method Character, the method of generating a nix environment from an renv.lock file.
"fast" is an inexact conversion which simply extracts the R version and a list
of all the packages in an renv.lock file and adds them to the r_pkgs argument
of rix(). This will use a snapshot of nixpkgs that should contain package
versions that are not too different from the ones defined in the renv.lock file.
For packages installed from Github or similar, an attempt is made to handle them
and pass them to the git_pkgs argument of rix(). Currently defaults to "fast",
"accurate" is not yet implemented.

override_r_ver Character defaults to NULL, override the R version defined in the renv.lock
file with another version. This is especially useful if the renv.lock file lists a
version of R not (yet) available through Nix.

... Arguments passed on to rix

system_pkgs Vector of characters. List further software you wish to install that
are not R packages such as command line applications for example. You
can look for available software on the NixOS website https://search.
nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&
type=packages&query= # nolint

local_r_pkgs List. A list of local packages to install. These packages need to
be in the .tar.gz or .zip formats and must be in the same folder as the
generated "default.nix" file.

tex_pkgs Vector of characters. A set of TeX packages to install. Use this if you
need to compile .tex documents, or build PDF documents using Quarto. If
you don’t know which package to add, start by adding "amsmath". See the
Vignette "Authoring LaTeX documents" for more details.

ide Character, defaults to "other". If you wish to use RStudio to work inter-
actively use "rstudio" or "rserver" for the server version. Use "code" for
Visual Studio Code. You can also use "radian", an interactive REPL. For
other editors, use "other". This has been tested with RStudio, VS Code and
Emacs. If other editors don’t work, please open an issue.

project_path Character. Where to write default.nix, for example "/home/path/to/project".
The file will thus be written to the file "/home/path/to/project/default.nix".
If the folder does not exist, it will be created.

overwrite Logical, defaults to FALSE. If TRUE, overwrite the default.nix
file in the specified path.

print Logical, defaults to FALSE. If TRUE, print default.nix to console.
message_type Character. Message type, defaults to "simple", which gives

minimal but sufficient feedback. Other values are currently "quiet, which
generates the files without message, and "verbose", displays all the mes-
sages.

shell_hook Character of length 1, defaults to NULL. Commands added to the
shellHook variable are executed when the Nix shell starts. So by default,
using nix-shell default.nix will start a specific program, possibly with
flags (separated by space), and/or do shell actions. You can for example
use shell_hook = R, if you want to directly enter the declared Nix R ses-
sion when dropping into the Nix shell. @details This function will write a
default.nix and an .Rprofile in the chosen path. Using the Nix package

https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=
https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=
https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=

renv2nix 7

manager, it is then possible to build a reproducible development environ-
ment using the nix-build command in the path. This environment will
contain the chosen version of R and packages, and will not interfere with
any other installed version (via Nix or not) on your machine. Every depen-
dency, including both R package dependencies but also system dependen-
cies like compilers will get installed as well in that environment.
It is possible to use environments built with Nix interactively, either from
the terminal, or using an interface such as RStudio. If you want to use RStu-
dio, set the ide argument to "rstudio". Please be aware that RStudio is not
available for macOS through Nix. As such, you may want to use another
editor on macOS. To use Visual Studio Code (or Codium), set the ide argu-
ment to "code", which will add the {languageserver} R package to the
list of R packages to be installed by Nix in that environment. You can use
the version of Visual Studio Code or Codium you already use, or also install
it using Nix (by adding "vscode" or "vscodium" to the list of system_pkgs).
For non-interactive use, or to use the environment from the command line,
or from another editor (such as Emacs or Vim), set the ide argument to
"other". We recommend reading the vignette("e-interactive-use")
for more details.
Packages to install from Github or Gitlab must be provided in a list of 3 ele-
ments: "package_name", "repo_url" and "commit". To install several pack-
ages, provide a list of lists of these 3 elements, one per package to install.
It is also possible to install old versions of packages by specifying a ver-
sion. For example, to install the latest version of {AER} but an old version
of {ggplot2}, you could write: r_pkgs = c("AER", "ggplot2@2.2.1").
Note however that doing this could result in dependency hell, because an
older version of a package might need older versions of its dependencies,
but other packages might need more recent versions of the same dependen-
cies. If instead you want to use an environment as it would have looked
at the time of {ggplot2}’s version 2.2.1 release, then use the Nix revision
closest to that date, by setting r_ver = "3.1.0", which was the version of
R current at the time. This ensures that Nix builds a completely coher-
ent environment. For security purposes, users that wish to install packages
from Github/Gitlab or from the CRAN archives must provide a security
hash for each package. {rix} automatically precomputes this hash for the
source directory of R packages from GitHub/Gitlab or from the CRAN
archives, to make sure the expected trusted sources that match the pre-
computed hashes in the default.nix are downloaded. If Nix is available,
then the hash will be computed on the user’s machine, however, if Nix is
not available, then the hash gets computed on a server that we set up for
this purposes. This server then returns the security hash as well as the de-
pendencies of the packages. It is possible to control this behaviour using
options(rix.sri_hash=x), where x is one of "check_nix" (the default),
"locally" (use the local Nix installation) or "api_server" (use the remote
server to compute and return the hash).
Note that installing packages from Git or old versions using the "@" nota-
tion or local packages, does not leverage Nix’s capabilities for dependency
solving. As such, you might have trouble installing these packages. If that

8 renv_lock_r_ver

is the case, open an issue on {rix}’s Github repository.
By default, the Nix shell will be configured with "en_US.UTF-8" for the rel-
evant locale variables (LANG, LC_ALL, LC_TIME, LC_MONETARY, LC_PAPER,
LC_MEASUREMENT). This is done to ensure locale reproducibility by default
in Nix environments created with rix(). If there are good reasons to
not stick to the default, you can set your preferred locale variables via
options(rix.nix_locale_variables = list(LANG = "de_CH.UTF-8", <...>)
and the aforementioned locale variable names.
It is possible to use "bleeding_edge" or "frozen_edge" as the value for
the r_ver argument. This will create an environment with the very latest
R packages. "bleeding_edge" means that every time you will build the
environment, the packages will get updated. This is especially useful for
environments that need to be constantly updated, for example when devel-
oping a package. In contrast, "frozen_edge" will create an environment
that will remain stable at build time. So if you create a default.nix file
using "bleeding_edge", each time you build it using nix-build that en-
vironment will be up-to-date. With "frozen_edge" that environment will
be up-to-date on the date that the default.nix will be generated, and then
each subsequent call to nix-build will result in the same environment. We
highly recommend you read the vignette titled "z - Advanced topic: Under-
standing the rPackages set release cycle and using bleeding edge packages".

Value

Nothing, this function is called for its side effects only, unless return_rix_call = TRUE in which
case an unevaluated call to rix() is returned

renv_lock_r_ver renv_lock_r_ver

Description

renv_lock_r_ver

Usage

renv_lock_r_ver(renv_lock, override_r_ver = NULL)

Arguments

renv_lock renv.lock file from which to get the R version

override_r_ver Character, override the R version defined in the renv.lock file with another
version. This is especially useful if the renv.lock file lists a version of R not
(yet) available through Nix.

Value

a length 1 character vector with the version of R recorded in renv.lock

renv_remote_pkgs 9

Examples

Not run:
rix(r_ver = renv_lock_r_ver())

End(Not run)

renv_remote_pkgs renv_remote_pkgs

Description

Construct a list to be passed the git_pkgs argument of rix The list returned contains the information
necessary to have nix attempt to build the packages from their external repositories.

Usage

renv_remote_pkgs(renv_lock_remote_pkgs, host = NULL)

Arguments

renv_lock_remote_pkgs

the list of package information from an renv.lock file.

host the host of remote package, defaults to NULL meaning the RemoteHost of the
renv entry will be used. currently supported hosts: ’api.github.com’ ’gitlab.com’
see remotes for more.

Value

a list of lists with three elements named: "package_name", "repo_url", "commit"

Examples

Not run:
renv_remote_pkgs(read_renv_lock()$Packages)

End(Not run)

https://remotes.r-lib.org/

10 rix

rix Generate a Nix expression that builds a reproducible development en-
vironment

Description

Generate a Nix expression that builds a reproducible development environment

Usage

rix(
r_ver = "latest",
r_pkgs = NULL,
system_pkgs = NULL,
git_pkgs = NULL,
local_r_pkgs = NULL,
tex_pkgs = NULL,
ide = c("other", "code", "radian", "rstudio", "rserver"),
project_path,
overwrite = FALSE,
print = FALSE,
message_type = "simple",
shell_hook = NULL

)

Arguments

r_ver Character, defaults to "latest". The required R version, for example "4.0.0". You
can check which R versions are available using available_r(). For repro-
ducibility purposes, you can also provide a nixpkgs revision directly. For older
versions of R, nix-build might fail with an error stating ’this derivation is not
meant to be built’. In this case, simply drop into the shell with nix-shell in-
stead of building it first. It is also possible to provide either "bleeding_edge" or
"frozen_edge" if you need an environment with bleeding edge packages. Read
more in the "Details" section below.

r_pkgs Vector of characters. List the required R packages for your analysis here.

system_pkgs Vector of characters. List further software you wish to install that are not R pack-
ages such as command line applications for example. You can look for avail-
able software on the NixOS website https://search.nixos.org/packages?
channel=unstable&from=0&size=50&sort=relevance&type=packages&query=
nolint

git_pkgs List. A list of packages to install from Git. See details for more information.

local_r_pkgs List. A list of local packages to install. These packages need to be in the
.tar.gz or .zip formats and must be in the same folder as the generated "de-
fault.nix" file.

https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=
https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=

rix 11

tex_pkgs Vector of characters. A set of TeX packages to install. Use this if you need to
compile .tex documents, or build PDF documents using Quarto. If you don’t
know which package to add, start by adding "amsmath". See the Vignette "Au-
thoring LaTeX documents" for more details.

ide Character, defaults to "other". If you wish to use RStudio to work interactively
use "rstudio" or "rserver" for the server version. Use "code" for Visual Studio
Code. You can also use "radian", an interactive REPL. For other editors, use
"other". This has been tested with RStudio, VS Code and Emacs. If other editors
don’t work, please open an issue.

project_path Character. Where to write default.nix, for example "/home/path/to/project".
The file will thus be written to the file "/home/path/to/project/default.nix". If the
folder does not exist, it will be created.

overwrite Logical, defaults to FALSE. If TRUE, overwrite the default.nix file in the
specified path.

print Logical, defaults to FALSE. If TRUE, print default.nix to console.

message_type Character. Message type, defaults to "simple", which gives minimal but suf-
ficient feedback. Other values are currently "quiet, which generates the files
without message, and "verbose", displays all the messages.

shell_hook Character of length 1, defaults to NULL. Commands added to the shellHook vari-
able are executed when the Nix shell starts. So by default, using nix-shell default.nix
will start a specific program, possibly with flags (separated by space), and/or do
shell actions. You can for example use shell_hook = R, if you want to directly
enter the declared Nix R session when dropping into the Nix shell. @details This
function will write a default.nix and an .Rprofile in the chosen path. Using
the Nix package manager, it is then possible to build a reproducible development
environment using the nix-build command in the path. This environment will
contain the chosen version of R and packages, and will not interfere with any
other installed version (via Nix or not) on your machine. Every dependency,
including both R package dependencies but also system dependencies like com-
pilers will get installed as well in that environment.
It is possible to use environments built with Nix interactively, either from the
terminal, or using an interface such as RStudio. If you want to use RStudio, set
the ide argument to "rstudio". Please be aware that RStudio is not available
for macOS through Nix. As such, you may want to use another editor on ma-
cOS. To use Visual Studio Code (or Codium), set the ide argument to "code",
which will add the {languageserver} R package to the list of R packages to be
installed by Nix in that environment. You can use the version of Visual Studio
Code or Codium you already use, or also install it using Nix (by adding "vs-
code" or "vscodium" to the list of system_pkgs). For non-interactive use, or
to use the environment from the command line, or from another editor (such as
Emacs or Vim), set the ide argument to "other". We recommend reading the
vignette("e-interactive-use") for more details.
Packages to install from Github or Gitlab must be provided in a list of 3 ele-
ments: "package_name", "repo_url" and "commit". To install several packages,
provide a list of lists of these 3 elements, one per package to install. It is also
possible to install old versions of packages by specifying a version. For exam-
ple, to install the latest version of {AER} but an old version of {ggplot2}, you

12 rix

could write: r_pkgs = c("AER", "ggplot2@2.2.1"). Note however that do-
ing this could result in dependency hell, because an older version of a package
might need older versions of its dependencies, but other packages might need
more recent versions of the same dependencies. If instead you want to use an
environment as it would have looked at the time of {ggplot2}’s version 2.2.1 re-
lease, then use the Nix revision closest to that date, by setting r_ver = "3.1.0",
which was the version of R current at the time. This ensures that Nix builds
a completely coherent environment. For security purposes, users that wish to
install packages from Github/Gitlab or from the CRAN archives must provide
a security hash for each package. {rix} automatically precomputes this hash
for the source directory of R packages from GitHub/Gitlab or from the CRAN
archives, to make sure the expected trusted sources that match the precomputed
hashes in the default.nix are downloaded. If Nix is available, then the hash
will be computed on the user’s machine, however, if Nix is not available, then
the hash gets computed on a server that we set up for this purposes. This server
then returns the security hash as well as the dependencies of the packages. It is
possible to control this behaviour using options(rix.sri_hash=x), where x
is one of "check_nix" (the default), "locally" (use the local Nix installation) or
"api_server" (use the remote server to compute and return the hash).
Note that installing packages from Git or old versions using the "@" notation or
local packages, does not leverage Nix’s capabilities for dependency solving. As
such, you might have trouble installing these packages. If that is the case, open
an issue on {rix}’s Github repository.
By default, the Nix shell will be configured with "en_US.UTF-8" for the relevant
locale variables (LANG, LC_ALL, LC_TIME, LC_MONETARY, LC_PAPER, LC_MEASUREMENT).
This is done to ensure locale reproducibility by default in Nix environments cre-
ated with rix(). If there are good reasons to not stick to the default, you can set
your preferred locale variables via options(rix.nix_locale_variables = list(LANG = "de_CH.UTF-8", <...>)
and the aforementioned locale variable names.
It is possible to use "bleeding_edge" or "frozen_edge" as the value for the
r_ver argument. This will create an environment with the very latest R pack-
ages. "bleeding_edge" means that every time you will build the environment,
the packages will get updated. This is especially useful for environments that
need to be constantly updated, for example when developing a package. In
contrast, "frozen_edge" will create an environment that will remain stable
at build time. So if you create a default.nix file using "bleeding_edge",
each time you build it using nix-build that environment will be up-to-date.
With "frozen_edge" that environment will be up-to-date on the date that the
default.nix will be generated, and then each subsequent call to nix-build
will result in the same environment. We highly recommend you read the vi-
gnette titled "z - Advanced topic: Understanding the rPackages set release cycle
and using bleeding edge packages".

Value

Nothing, this function only has the side-effect of writing two files: default.nix and .Rprofile
in the working directory. default.nix contains a Nix expression to build a reproducible environ-
ment using the Nix package manager, and .Rprofile ensures that a running R session from a Nix

rix_init 13

environment cannot access local libraries, nor install packages using install.packages() (nor
remove nor update them).

Examples

Not run:
Build an environment with the latest version of R
and the dplyr and ggplot2 packages
rix(

r_ver = "latest",
r_pkgs = c("dplyr", "ggplot2"),
system_pkgs = NULL,
git_pkgs = NULL,
local_r_pkgs = NULL,
ide = "code",
project_path = path_default_nix,
overwrite = TRUE,
print = TRUE,
message_type = "simple",
shell_hook = NULL

)

End(Not run)

rix_init Initiate and maintain an isolated, project-specific, and runtime-pure R
setup via Nix.

Description

Creates an isolated project folder for a Nix-R configuration. rix::rix_init() also adds, appends,
or updates with or without backup a custom .Rprofile file with code that initializes a startup R
environment without system’s user libraries within a Nix software environment. Instead, it restricts
search paths to load R packages exclusively from the Nix store. Additionally, it makes Nix utilities
like nix-shell available to run system commands from the system’s RStudio R session, for both
Linux and macOS.

Usage

rix_init(
project_path,
rprofile_action = c("create_missing", "create_backup", "overwrite", "append"),
message_type = c("simple", "quiet", "verbose")

)

Arguments

project_path Character with the folder path to the isolated nix-R project. If the folder does
not exist yet, it will be created.

14 rix_init

rprofile_action

Character. Action to take with .Rprofile file destined for project_path folder.
Possible values include "create_missing", which only writes .Rprofile if it
does not yet exist (otherwise does nothing) - this is the action set when using
rix() - ; "create_backup", which copies the existing .Rprofile to a new
backup file, generating names with POSIXct-derived strings that include the
time zone information. A new .Rprofile file will be written with default code
from rix::rix_init(); "overwrite" overwrites the .Rprofile file if it does
exist; "append" appends the existing file with code that is tailored to an isolated
Nix-R project setup.

message_type Character. Message type, defaults to "simple", which gives minimal but suf-
ficient feedback. Other values are currently "quiet, which writes .Rprofile
without message, and "verbose", which displays the mechanisms implemented
to achieve fully controlled R project environments in Nix.

Details

Enhancement of computational reproducibility for Nix-R environments:

The primary goal of rix::rix_init() is to enhance the computational reproducibility of Nix-R
environments during runtime. Concretely, if you already have a system or user library of R packages
(if you have R installed through the usual means for your operating system), using rix::rix_init()
will prevent Nix-R environments to load packages from the user library which would cause issues.
Notably, no restart is required as environmental variables are set in the current session, in addition
to writing an .Rprofile file. This is particularly useful to make with_nix() evaluate custom R
functions from any "Nix-to-Nix" or "System-to-Nix" R setups. It introduces two side-effects that
take effect both in a current or later R session setup:

1. Adjusting R_LIBS_USER path: By default, the first path of R_LIBS_USER points to the user li-
brary outside the Nix store (see also base::.libPaths()). This creates friction and potential
impurity as R packages from the system’s R user library are loaded. While this feature can be
useful for interactively testing an R package in a Nix environment before adding it to a .nix
configuration, it can have undesired effects if not managed carefully. A major drawback is
that all R packages in the R_LIBS_USER location need to be cleaned to avoid loading packages
outside the Nix configuration. Issues, especially on macOS, may arise due to segmentation
faults or incompatible linked system libraries. These problems can also occur if one of the
(reverse) dependencies of an R package is loaded along the process.

2. Make Nix commands available when running system commands from RStudio: In a
host RStudio session not launched via Nix (nix-shell), the environmental variables from
~/.zshrc or ~/.bashrc may not be inherited. Consequently, Nix command line interfaces
like nix-shell might not be found. The .Rprofile code written by rix::rix_init() en-
sures that Nix command line programs are accessible by adding the path of the "bin" directory
of the default Nix profile, "/nix/var/nix/profiles/default/bin", to the PATH variable in
an RStudio R session.

These side effects are particularly recommended when working in flexible R environments, espe-
cially for users who want to maintain both the system’s native R setup and utilize Nix expressions
for reproducible development environments. This init configuration is considered pivotal to en-
hance the adoption of Nix in the R community, particularly until RStudio in Nixpkgs is packaged

tar_nix_ga 15

for macOS. We recommend calling rix::rix_init() prior to comparing R code ran between two
software environments with rix::with_nix().

rix::rix_init() is called automatically by rix::rix() when generating a default.nix file,
and when called by rix::rix() will only add the .Rprofile if none exists. In case you have a
custom .Rprofile that you wish to keep using, but also want to benefit from what rix_init()
offers, manually call it and set the rprofile_action to "append".

Value

Nothing, this function only has the side-effect of writing a file called ".Rprofile" to the specified
path.

See Also

with_nix()

Examples

Not run:
create an isolated, runtime-pure R setup via Nix
project_path <- "./sub_shell"
if (!dir.exists(project_path)) dir.create(project_path)
rix_init(

project_path = project_path,
rprofile_action = "create_missing",
message_type = c("simple")

)

End(Not run)

tar_nix_ga tar_nix_ga Run a {targets} pipeline on Github Actions.

Description

tar_nix_ga Run a {targets} pipeline on Github Actions.

Usage

tar_nix_ga()

Details

This function puts a .yaml file inside the .github/workflows/ folders on the root of your project.
This workflow file will use the projects default.nix file to generate the development environment
on Github Actions and will then run the projects {targets} pipeline. Make sure to give read and
write permissions to the Github Actions bot.

16 with_nix

Value

Nothing, copies file to a directory.

Examples

Not run:
tar_nix_ga()

End(Not run)

with_nix Evaluate function in R or shell command via nix-shell environment

Description

This function needs an installation of Nix. with_nix() has two effects to run code in isolated and
reproducible environments.

1. Evaluate a function in R or a shell command via the nix-shell environment (Nix expression
for custom software libraries; involving pinned versions of R and R packages via Nixpkgs)

2. If no error, return the result object of expr in with_nix() into the current R session.

Usage

with_nix(
expr,
program = c("R", "shell"),
project_path = ".",
message_type = c("simple", "quiet", "verbose")

)

Arguments

expr Single R function or call, or character vector of length one with shell command
and possibly options (flags) of the command to be invoked. For program = R,
you can both use a named or an anonymous function. The function provided
in expr should not evaluate when you pass arguments, hence you need to wrap
your function call like function() your_fun(arg_a = "a", arg_b = "b"), to
avoid evaluation and make sure expr is a function (see details and examples).

program String stating where to evaluate the expression. Either "R", the default, or
"shell". where = "R" will evaluate the expression via RScript and where =
"shell" will run the system command in nix-shell.

project_path Path to the folder where the default.nix file resides. The default is ".", which
is the working directory in the current R session. This approach also useful
when you have different subfolders with separate software environments defined
in different default.nix files.

message_type String how detailed output is. Currently, there is either "simple" (default),
"quiet or "verbose", which shows the script that runs via nix-shell.

with_nix 17

Details

with_nix() gives you the power of evaluating a main function expr and its function call stack that
are defined in the current R session in an encapsulated nix-R session defined by Nix expression
(default.nix), which is located in at a distinct project path (project_path).

with_nix() is very convenient because it gives direct code feedback in read-eval-print-loop style,
which gives a direct interface to the very reproducible infrastructure-as-code approach offered by
Nix and Nixpkgs. You don’t need extra efforts such as setting up DevOps tooling like Docker and
domain specific tools like {renv} to control complex software environments in R and any other
language. It is for example useful for the following purposes.

1. test compatibility of custom R code and software/package dependencies in development and
production environments

2. directly stream outputs (returned objects), messages and errors from any command line tool
offered in Nixpkgs into an R session.

3. Test if evolving R packages change their behavior for given unchanged R code, and whether
they give identical results or not.

with_nix() can evaluate both R code from a nix-R session within another nix-R session, and also
from a host R session (i.e., on macOS or Linux) within a specific nix-R session. This feature is
useful for testing the reproducibility and compatibility of given code across different software envi-
ronments. If testing of different sets of environments is necessary, you can easily do so by providing
Nix expressions in custom .nix or default.nix files in different subfolders of the project.

rix_init() is run automatically to generate a custom .Rprofile file for the subshell in project_dir.
The defaults in that file ensure that only R packages from the Nix store, that are defined in the sub-
shell .nix file are loaded and system’s libraries are excluded.

To do its job, with_nix() heavily relies on patterns that manipulate language expressions (aka
computing on the language) offered in base R as well as the {codetools} package by Luke Tierney.

Some of the key steps that are done behind the scene:

1. recursively find, classify, and export global objects (globals) in the call stack of expr as well
as propagate R package environments found.

2. Serialize (save to disk) and deserialize (read from disk) dependent data structures as .Rds with
necessary function arguments provided, any relevant globals in the call stack, packages, and
expr outputs returned in a temporary directory.

3. Use pure nix-shell environments to execute a R code script reconstructed catching ex-
pressions with quoting; it is launched by commands like this via {sys} by Jeroen Ooms:
nix-shell --pure --run "Rscript --vanilla".

Value

• if program = "R", R object returned by function given in expr when evaluated via the R envi-
ronment in nix-shell defined by Nix expression.

• if program = "shell", list with the following elements:
– status: exit code
– stdout: character vector with standard output
– stderr: character vector with standard error of expr command sent to a command line

interface provided by a Nix package.

18 with_nix

Examples

Not run:
create an isolated, runtime-pure R setup via Nix
project_path <- "./sub_shell"
rix_init(

project_path = project_path,
rprofile_action = "create_missing"

)
generate nix environment in `default.nix`
rix(

r_ver = "4.2.0",
project_path = project_path

)
evaluate function in Nix-R environment via `nix-shell` and `Rscript`,
stream messages, and bring output back to current R session
out <- with_nix(

expr = function(mtcars) nrow(mtcars),
program = "R", project_path = project_path,
message_type = "simple"

)

There no limit in the complexity of function call stacks that `with_nix()`
can possibly handle; however, `expr` should not evaluate and
needs to be a function for `program = "R"`. If you want to pass the
a function with arguments, you can do like this
get_sample <- function(seed, n) {

set.seed(seed)
out <- sample(seq(1, 10), n)
return(out)

}

out <- with_nix(
expr = function() get_sample(seed = 1234, n = 5),
program = "R",
project_path = ".",
message_type = "simple"

)

You can also attach packages with `library()` calls in the current R
session, which will be exported to the nix-R session.
Other option: running system commands through `nix-shell` environment.

End(Not run)

Index

available_r, 2

base::.libPaths(), 14

ga_cachix, 2
generate_rpkgs, 3

jsonlite::read_json, 5

nix_build, 4

read_renv_lock, 5
renv2nix, 5
renv_lock_r_ver, 8
renv_remote_pkgs, 9
rix, 6, 9, 10
rix_init, 13

tar_nix_ga, 15

with_nix, 16
with_nix(), 14, 15

19

	available_r
	ga_cachix
	generate_rpkgs
	nix_build
	read_renv_lock
	renv2nix
	renv_lock_r_ver
	renv_remote_pkgs
	rix
	rix_init
	tar_nix_ga
	with_nix
	Index

